Skip to content
caffelattela

caffelattela

Where Is Your Cooking

Primary Menu caffelattela

caffelattela

  • Best Restaurants
  • Traditional Food
  • Food & Cooking
  • Japanese Food
  • Healthy Food
  • Recipes Food
  • About Us
    • Advertise Here
    • Contact Us
    • Privacy Policy
    • Sitemap
  • Home
  • Artificial Photosynthesis Can Produce Food in Complete Darkness
  • Traditional Food

Artificial Photosynthesis Can Produce Food in Complete Darkness

Courtney M. Wolf June 27, 2022
Plants Growing in Complete Darkness

Crops are escalating in total darkness in an acetate medium that replaces biological photosynthesis. Credit rating: Marcus Harland-Dunaway/UCR

Synthetic Mars.

For millions of years, photosynthesis has evolved in plants  to turn water, carbon dioxide, and the energy from sunlight into plant biomass and the foods we eat. However, this process is very inefficient, with only around 1% of the energy found in sunlight ending up in the plant. Researchers at the University of California, Riverside and the University of Delaware have found a way to bypass the need for biological photosynthesis altogether and create food independent of sunlight by using artificial photosynthesis.

The new research, published on June 23, 2022, in the journal Nature Food, uses a two-step electrocatalytic process to convert carbon dioxide, electricity, and water into acetate, the form of the main component of vinegar. Food-producing organisms then consume acetate in the dark to grow. Combined with solar panels to generate electricity to power the electrocatalysis, this hybrid organic-inorganic system could increase the conversion efficiency of sunlight into food, up to 18 times more efficient for some foods.

“With our approach we sought to identify a new way of producing food that could break through the limits normally imposed by biological photosynthesis,” said corresponding author Robert Jinkerson, a UC Riverside assistant professor of chemical and environmental engineering.

In order to integrate all the components of the system together, the output of the electrolyzer was optimized to support the growth of food-producing organisms. Electrolyzers are devices that use electricity to convert raw materials like carbon dioxide into useful molecules and products. The amount of acetate produced was increased while the amount of salt used was decreased, resulting in the highest levels of acetate ever produced in an electrolyzer to date.

“Using a state-of-the-art two-step tandem CO2 electrolysis setup developed in our laboratory, we were able to achieve a high selectivity towards acetate that cannot be accessed through conventional CO2 electrolysis routes,” said corresponding author Feng Jiao at University of Delaware.

Experiments showed that a wide range of food-producing organisms can be grown in the dark directly on the acetate-rich electrolyzer output, including green algae, yeast, and fungal mycelium that produce mushrooms. Producing algae with this technology is approximately fourfold more energy efficient than growing it photosynthetically. Yeast production is about 18-fold more energy efficient than how it is typically cultivated using sugar extracted from corn.

“We were able to grow food-producing organisms without any contributions from biological photosynthesis. Typically, these organisms are cultivated on sugars derived from plants or inputs derived from petroleum—which is a product of biological photosynthesis that took place millions of years ago. This technology is a more efficient method of turning solar energy into food, as compared to food production that relies on biological photosynthesis,” said Elizabeth Hann, a doctoral candidate in the Jinkerson Lab and co-lead author of the study.

The potential for employing this technology to grow crop plants was also investigated. Cowpea, tomato, tobacco, rice, canola, and green pea were all able to utilize carbon from acetate when cultivated in the dark.

“We found that a wide range of crops could take the acetate we provided and build it into the major molecular building blocks an organism needs to grow and thrive. With some breeding and engineering that we are currently working on we might be able to grow crops with acetate as an extra energy source to boost crop yields,” said Marcus Harland-Dunaway, a doctoral candidate in the Jinkerson Lab and co-lead author of the study.

By liberating agriculture from complete dependence on the sun, artificial photosynthesis opens the door to countless possibilities for growing food under the increasingly difficult conditions imposed by anthropogenic climate change. Drought, floods, and reduced land availability would be less of a threat to global food security if crops for humans and animals grew in less resource-intensive, controlled environments. Crops could also be grown in cities and other areas currently unsuitable for agriculture, and even provide food for future space explorers.

“Using artificial photosynthesis approaches to produce food could be a paradigm shift for how we feed people. By increasing the efficiency of food production, less land is needed, lessening the impact agriculture has on the environment. And for agriculture in non-traditional environments, like outer space, the increased energy efficiency could help feed more crew members with less inputs,” said Jinkerson.

This approach to food production was submitted to NASA’s Deep Space Food Challenge where it was a Phase I winner. The Deep Space Food Challenge is an international competition where prizes are awarded to teams to create novel and game-changing food technologies that require minimal inputs and maximize safe, nutritious, and palatable food outputs for long-duration space missions.

“Imagine someday giant vessels growing tomato plants in the dark and on Mars—how much easier would that be for future Martians?” said co-author Martha Orozco-Cárdenas, director of the UC Riverside Plant Transformation Research Center.

Reference: “A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production” by Elizabeth C. Hann, Sean Overa, Marcus Harland-Dunaway, Andrés F. Narvaez, Dang N. Le, Martha L. Orozco-Cárdenas, Feng Jiao and Robert E. Jinkerson, 23 June 2022, Nature Food.
DOI: 10.1038/s43016-022-00530-x

Andres Narvaez, Dang Le, and Sean Overa also contributed to the research. The open-access paper is entitled “A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production.”

The research was supported by the Translational Research Institute for Space Health (TRISH) through NASA (NNX16AO69A), Foundation for Food and Agriculture Research (FFAR), the Link Foundation, the U.S. National Science Foundation, and the U.S. Department of Energy. The content of this publication is solely the responsibility of the authors and does not necessarily represent the official views of the Foundation for Food and Agriculture Research.

Post navigation

Previous: Japanese PM Kishida’s support edges down, voters critical about rising prices
Next: Chef Star Maye Went From Overlooked To On Top Of Nashville’s Food Scene

More Stories

Fast and Reliable Relief for Sinus Infection in Tampa, FL
  • Traditional Food

Fast and Reliable Relief for Sinus Infection in Tampa, FL

Courtney M. Wolf July 1, 2025
Effective Promotion Strategies to Maximize Your Mexican Eatery’s Reach in 2024
  • Traditional Food

Effective Promotion Strategies to Maximize Your Mexican Eatery’s Reach in 2024

Courtney M. Wolf November 30, 2024
Ruby Jewelry for the Minimalist Woman: Simple and Sophisticated
  • Traditional Food

Ruby Jewelry for the Minimalist Woman: Simple and Sophisticated

Courtney M. Wolf November 25, 2024
November 2025
M T W T F S S
 12
3456789
10111213141516
17181920212223
24252627282930
« Jul    

Archives

Categories

  • Best Restaurants
  • Food & Cooking
  • Healthy Food
  • Japanese Food
  • Recipes Food
  • Traditional Food

Recent Posts

  • Fast and Reliable Relief for Sinus Infection in Tampa, FL
  • Effective Promotion Strategies to Maximize Your Mexican Eatery’s Reach in 2024
  • Ruby Jewelry for the Minimalist Woman: Simple and Sophisticated
  • How to Hire the Right Kitchen Porter: 7 Tips for Hotels
  • 5 Kitchen Upgrades That Every Homeowner Should Consider Once In A While

Fiverr

Fiverr Logo

Tags

C Food Crush San Mateo C Food Market C Foods List D Food Capital D Food Company D Food Delivery D Food Items D Food Names D Food Near Me D Food Sialkot Contact Number D Food Words E Food Card E Food Handlers E Food Handlers Card Arizona E Food Handlers Card California E Foodie E Foods Inc E Foods Names E Food Words F Food Culture Magazine F Food Magazine F Foods F Foods Names Food Food Dehydrator Food Delivery Food Delivery Apps Food Delivery Services Food Depot Food Desert Food Drive Food Emoji Food Emporium Food Emporium Nyc Food Engineering Food Events Near Me Food Exchange Food Express Food Fight Food For Delivery Near Me Food For Less Food For Less Near Me Food For The Hungry Food For The Poor recipe
deencast
purrvilla

pondok

runwiki
westcrush

PL

shinelia
cultbridge

t

You may have missed

Fast and Reliable Relief for Sinus Infection in Tampa, FL
  • Traditional Food

Fast and Reliable Relief for Sinus Infection in Tampa, FL

Courtney M. Wolf July 1, 2025
Effective Promotion Strategies to Maximize Your Mexican Eatery’s Reach in 2024
  • Traditional Food

Effective Promotion Strategies to Maximize Your Mexican Eatery’s Reach in 2024

Courtney M. Wolf November 30, 2024
Ruby Jewelry for the Minimalist Woman: Simple and Sophisticated
  • Traditional Food

Ruby Jewelry for the Minimalist Woman: Simple and Sophisticated

Courtney M. Wolf November 25, 2024
How to Hire the Right Kitchen Porter: 7 Tips for Hotels
  • Traditional Food

How to Hire the Right Kitchen Porter: 7 Tips for Hotels

Courtney M. Wolf November 18, 2024
5 Kitchen Upgrades That Every Homeowner Should Consider Once In A While
  • Traditional Food

5 Kitchen Upgrades That Every Homeowner Should Consider Once In A While

Courtney M. Wolf November 15, 2024
caffelattela.com | CoverNews by AF themes.

WhatsApp us